How about ANY FINITE SEQUENCE AT ALL?

    • Arfman@aussie.zone
      link
      fedilink
      arrow-up
      0
      ·
      3 hours ago

      I’m a layman here and not a mathematician but how does it store the complete value of pi and not rounded up to a certain amount? Or do one of the libraries generate that?

    • NotMyOldRedditName@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      5 hours ago

      I can’t tell if this is a joke or real code… like for this sentence below.

      The cat is back.

      Will that repo seriously run until it finds where that is in pi? However long it might take, hours, days, years, decades, and then tell you, so you can look it up quickly?

      • lukewarm_ozone@lemmy.today
        link
        fedilink
        English
        arrow-up
        0
        ·
        edit-2
        24 minutes ago

        I can’t tell if this is a joke or real code

        Yes.

        Will that repo seriously run until it finds where that is in pi?

        Sure. It’ll take a very long while though. We can estimate roughly how long - encoded as ASCII and translated to hex your sentence looks like 54686520636174206973206261636b. That’s 30 hexadecimal digits. So very roughly, one of each 16^30 30-digit sequences will match this one. So on average, you’d need to look about 16^30 * 30 ≈ 4e37 digits into π to find a sequence matching this one. For comparison, something on the order of 1e15 digits of pi were ever calculated.

        so you can look it up quickly?

        Not very quickly, it’s still n log n time. More importantly, information theory is ruthless: there exist no compression algorithms that have on average a >1 compression coefficient for arbitrary data. So if you tried to use π as compression, the offsets you get would on average be larger than the data you are compressing. For example, your data here can be written written as 30 hexadecimal digits, but the offset into pi would be on the order of 4e37, which takes ~90 hexadecimal digits to write down.

    • db0@lemmy.dbzer0.com
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      7 hours ago

      Thats very cool. It brings to mind some sort of espionage where spies are exchanging massive messages contained in 2 numbers. The index and the Metadata length. All the other spy has to do is pass it though pifs to decode. Maybe adding some salt as well to prevent someone figuring it out.

  • juliebean@lemm.ee
    link
    fedilink
    arrow-up
    0
    ·
    12 hours ago

    no. it merely being infinitely non-repeating is insufficient to say that it contains any particular finite string.

    for instance, write out pi in base 2, and reinterpret as base 10.

    11.0010010000111111011010101000100010000101...
    

    it is infinitely non-repeating, but nowhere will you find a 2.

    i’ve often heard it said that pi, in particular, does contain any finite sequence of digits, but i haven’t seen a proof of that myself, and if it did exist, it would have to depend on more than its irrationality.

    • tetris11@lemmy.ml
      link
      fedilink
      arrow-up
      0
      ·
      9 hours ago

      Isnt this a stupid example though, because obviously if you remove all penguins from the zoo, you’re not going to see any penguins

      • Lanthanae@lemmy.blahaj.zone
        link
        fedilink
        arrow-up
        0
        ·
        6 hours ago

        Its not stupid. To disprove a claim that states “All X have Y” then you only need ONE example. So, as pick a really obvious example.

        • Robust Mirror@aussie.zone
          link
          fedilink
          arrow-up
          0
          ·
          6 hours ago

          It’s misunderstanding the question even if unintentionally.

          Clearer: Since Pi is infinite and non-repeating, would that mean any finite sequence of non-repeating digits from 0-9 should appear somewhere in Pi in base 10?

          They somehow interpreted it as Does any possible string of infinite non-repeating digits contain every possible finite sequence of non repeating digits?

          It’s like if I ask “since the dictionary contains every word that means it contains every letter right?” And someone answers, actually you’ll find if you translate it to Japanese and only use kanji it actually doesn’t contain these letters. It fundamentally isn’t what I’m asking, and yes, you can argue I didn’t say IN ENGLISH, but just like the pi question, I feel like it’s pretty intuitive that I wasn’t referring to non English letters in the question.

          • stevedice@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            0
            ·
            edit-2
            4 hours ago

            Since Pi is infinite and non-repeating, would that mean any finite sequence of non-repeating digits from 0-9 should appear somewhere in Pi in base 10?

            Does any possible string of infinite non-repeating digits contain every possible finite sequence of non repeating digits?

            Let’s abstract this.

            S = an arbitrary string of numbers

            X = is infinite

            Y = is non-repeating

            Z = contains every possible sequence of finite digits

            Now your statements become:

            Since S is X and Y, does that mean that it’s also Z?

            Does any S that is X and Y, also Z?"

          • Lanthanae@lemmy.blahaj.zone
            link
            fedilink
            arrow-up
            0
            ·
            edit-2
            5 hours ago

            In terms of formal logic, this…

            Since Pi is infinite and non-repeating, would that mean any finite sequence of non-repeating digits from 0-9 should appear somewhere in Pi in base 10?

            …and this…

            Does any possible string of infinite non-repeating digits contain every possible finite sequence of non repeating digits?

            are equivalent statements.

            The phrase “since X, would that mean Y” is the same as asking “is X a sufficient condition for Y”. Providing ANY example of X WITHOUT Y is a counter-example which proves X is NOT a sufficient condition.

            The 1.010010001… example is literally one that is taught in classes to disprove OPs exact hypothesis. This isn’t a discussion where we’re both offering different perspectives and working towards a truth we don’t both see, thus is a discussion where you’re factually wrong and I’m trying to help you learn why lol.

            • Sheldan@lemmy.world
              link
              fedilink
              arrow-up
              0
              ·
              edit-2
              1 hour ago

              Is the 1.0010101 just another sequence with similar properties? And this sequence with similar properties just behaves differently than pi.

              Others mentioned a zoo and a penguin. If you say that a zoo will contain a penguin, and then take one that doesn’t, then obviously it will not contain a penguin. If you take a sequence that only consists of 0 and 1 and it doesn’t contain a 2, then it obviously won’t.

              But I find the example confusing to take pi, transform it and then say “yeah, this transformed pi doesn’t have it anymore, so obviously pi doesn’t” If I take all the 2s out of pi, then it will obviously not contain any 2 anymore, but it will also not be really be pi anymore, but just another sequence of infinite length and non repeating.

              So, while it is true that the two properties do not necessarily lead to this behavior. The example of transforming pi to something is more confusing than helping.

              • orcrist@lemm.ee
                link
                fedilink
                arrow-up
                0
                ·
                49 minutes ago

                The original question was not exactly about pi in base ten. It was about infinite non-repeating numbers. The comment answered the question by providing a counterexample to the proffered claim. It was perfectly good math.

                You have switched focus to a different question. And that is fine, but please recognize that you have done so. See other comment threads for more information about pi itself.

      • untorquer@lemmy.world
        link
        fedilink
        arrow-up
        0
        ·
        9 hours ago

        The explanation is misdirecting because yes they’re removing the penguins from the zoo. But they also interpreted the question as to if the zoo had infinite non-repeating exhibits whether it would NECESSARILY contain penguins. So all they had to show was that the penguins weren’t necessary.

        By tying the example to pi they seemed to be trying to show something about pi. I don’t think that was the intention.

        • juliebean@lemm.ee
          link
          fedilink
          arrow-up
          0
          ·
          1 hour ago

          i just figured using pi was an easy way to acquire a known irrational number, not trying to make any special point about it.

      • tomi000@lemmy.world
        link
        fedilink
        arrow-up
        0
        ·
        11 hours ago

        Like the other commenter said its meant to be interpreted in base10.

        You could also just take 0.01001100011100001111… as an example

      • gerryflap@feddit.nl
        link
        fedilink
        arrow-up
        0
        ·
        11 hours ago

        They also say “and reinterpret in base 10”. I.e. interpret the base 2 number as a base 10 number (which could theoretically contain 2,3,4,etc). So 10 in that number represents decimal 10 and not binary 10

        • CaptSneeze@lemmy.world
          link
          fedilink
          arrow-up
          0
          ·
          11 hours ago

          I don’t think the example given above is an apples-to-apples comparison though. This new example of “an infinite non-repeating string” is actually “an infinite non-repeating string of only 0s and 1s”. Of course it’s not going to contain a “2”, just like pi doesn’t contain a “Y”. Wouldn’t a more appropriate reframing of the original question to go with this new example be “would any finite string consisting of only 0s and 1s be present in it?”

          • Phlimy@jlai.lu
            link
            fedilink
            arrow-up
            0
            ·
            7 hours ago

            They just proved that “X is irrational and non-repeating digits -> can find any sequence in X”, as the original question implied, is false. Maybe pi does in fact contain any sequence, but that wouldn’t be because of its irrationality or the fact that it’s non-repeating, it would be some other property

    • some_guy@lemmy.sdf.org
      link
      fedilink
      arrow-up
      0
      ·
      17 hours ago

      https://github.com/philipl/pifs

      I enjoyed this linked text:

      If you compute it, you will be guilty of:

      • Copyright infringement (of all books, all short stories, all newspapers, all magazines, all web sites, all music, all movies, and all software, including the complete Windows source code)
      • Trademark infringement
      • Possession of child pornography
      • Espionage (unauthorized possession of top secret information)
      • Possession of DVD-cracking software
      • Possession of threats to the President
      • Possession of everyone’s SSN, everyone’s credit card numbers, everyone’s PIN numbers, everyone’s unlisted phone numbers, and everyone’s passwords
      • Defaming Islam. Not technically illegal, but you’ll have to go into hiding along with Salman Rushdie.
      • Defaming Scientology. Which IS illegal–just ask Keith Henson.
  • SwordInStone@lemmy.world
    link
    fedilink
    arrow-up
    0
    ·
    21 hours ago

    No, the fact that a number is infinite and non-repeating doesn’t mean that and since in order to disprove something you need only one example here it is: 0.1101001000100001000001… this is a number that goes 1 and then x times 0 with x incrementing.It is infinite and non-repeating, yet doesn’t contain a single 2.

    • underwire212@lemm.ee
      link
      fedilink
      arrow-up
      0
      ·
      11 hours ago

      Wouldn’t binary ‘10’ be 2, which it does contain? I feel like that’s cheating, since binary is just a mode of interpreting information …all numbers, regardless of base, can be represented in binary.

      • Teepo@sh.itjust.works
        link
        fedilink
        arrow-up
        0
        ·
        11 hours ago

        They’re not writing in binary. They’re defining a base 10 number that is 0.11, followed by a single 0, then 1, then two 0s, then 1, then three 0s, then 1, and so on. The definition ensures that it never repeats, but because it only contains 1 and 0, it would never contain any sequence with the numbers 2 through 9.

    • GreyEyedGhost@lemmy.ca
      link
      fedilink
      arrow-up
      0
      ·
      16 hours ago

      This proves that an infinite, non-repeating number needn’t contain any given finite numeric sequence, but it doesn’t prove that an infinite, non-repeating number can’t. This is not to say that Pi does contain all finite numeric sequences, just that this statement isn’t sufficient to prove it can’t.

      • SwordInStone@lemmy.world
        link
        fedilink
        arrow-up
        0
        ·
        11 hours ago

        you are absolutely right.

        it just proves that even if Pi contains all finite sequences it’s not “since it oa infinite and non-repeating”

      • Sconrad122@lemmy.world
        link
        fedilink
        arrow-up
        0
        ·
        18 hours ago

        A nonrepeating number does not mean that a sequence within that number never happens again, it means that the there is no point in the number where you can predict the numbers to follow by playing back a subset of the numbers before that point on repeat. So for 01 to be the “repeating pattern”, the rest of the number at some point would have to be 010101010101010101… You can find the sequence “14” at digits 2 and 3, 104 and 105, 251 and 252, and 296 and 297 (I’m sure more places as well).

    • Azzu@lemm.ee
      link
      fedilink
      arrow-up
      0
      ·
      20 hours ago

      But didn’t you just give a counterexample with an infinite number? OP only said something about finite numbers.

      • Kairos@lemmy.today
        link
        fedilink
        arrow-up
        0
        ·
        12 hours ago

        I don’t know of one but the proof is simple. Let me try (badly) to make one up:

        If it doesn’t go into a loop of some kind, then it necessarily must include all finite strings (that’s a theoretical compsci term).

        Basically, take a string of any finite length, and then view pi in inrements of this length. Calculate it out to double the amount of substrings of length of your target string’s interval you have [or intervals]. Check if your string one of those intervals. If not, do it again until it is, doubling how long you calculate each time.

        Because pi is non-repeating, each doubling in intervals must necessarily include at least one new interval from all other previous ones. And because your target string length is finite, you have a finite upper limit to how many of these doublings you have to search. I think it’s n in the length of your target string.

        Someone please check my work I’m bad at these things, but that’s the general idea. It’s also wildly inefficient This doesn’t work with Infinite strings because of diagnonalization.

        • Kogasa@programming.dev
          link
          fedilink
          arrow-up
          0
          ·
          11 hours ago

          Your first sentence asserts the claim to be proved. Actually it asserts something much stronger which is also false, as e.g. 0.101001000100001… is a non-repeating decimal which doesn’t include “2”. While pi is known to be irrational and transcendental, there is no known proof that it is normal or even disjunctive, and generally such proofs are hard to come by except for pathological numbers constructed specifically to be normal/disjunctive or not.

        • weker01@sh.itjust.works
          link
          fedilink
          arrow-up
          0
          ·
          11 hours ago

          Let me give another counterexample. Let x be the binary expansion of pi i.e. the infinite string representing pi in base 2.

          Now you will not find 2 in this sequence by definition but it’s still a non-repeating number.

          Now one can validly say that we restricted our alphabet and we should look only for finite strings with digits that actually occure in the number. The answer is the string “23456789” concatenated with x.

          • Kairos@lemmy.today
            link
            fedilink
            arrow-up
            0
            ·
            11 hours ago

            That’s like saying your car is busted because it can’t drive on a road made of broken glass.

            • weker01@sh.itjust.works
              link
              fedilink
              arrow-up
              0
              ·
              edit-2
              11 hours ago

              That’s mathematics. It do be like that sometimes. Counterexamples can be stupid but still valid.

              It’s on you to prove your claims.

        • weker01@sh.itjust.works
          link
          fedilink
          arrow-up
          0
          ·
          edit-2
          11 hours ago

          No this does not work. Counter example can be found in the comments here of a non-repeating number that definitely does not contain all finite strings.

          Edit: I think the confusion is about the word non-repeating. Non repeating does not mean a subsequence cannot repeat but that you cannot write the number as a rational.

          • Kairos@lemmy.today
            link
            fedilink
            arrow-up
            0
            ·
            edit-2
            11 hours ago

            Are you talking about a different base/character set? I think every single person understands that.

    • BrainInABox@lemmy.ml
      link
      fedilink
      English
      arrow-up
      0
      ·
      21 hours ago

      Are you trying to say the answer to their question is no? Because if so, you’re wrong, and if not I’m not sure what you’re trying to say.

      • ped_xing [he/him]@hexbear.net
        link
        fedilink
        English
        arrow-up
        0
        ·
        19 hours ago

        The conclusion does not follow from the premises, as evidenced by my counterexample. It could be the case that every finite string of digits appears in the decimal expansion of pi, but if that’s the case, a proof would have to involve more properties than an infinite non-repeating decimal expansion. I would like to see your proof that every finite string of digits appears in the decimal expansion of pi.

        • BrainInABox@lemmy.ml
          link
          fedilink
          English
          arrow-up
          0
          ·
          19 hours ago

          Well that’s just being pointlessly pedantic, obviously they fucking know that a repeating number of all zeros and ones doesn’t have a two in it. This is pure reddit pedantry you’re doing

  • Call me Lenny/Leni@lemm.ee
    link
    fedilink
    English
    arrow-up
    0
    ·
    1 day ago

    Yes, this is implied. It’s also why many people use digits of pi as passwords and make the password hint “easy as pi”.

    • 𝚝𝚛𝚔@aussie.zone
      link
      fedilink
      English
      arrow-up
      0
      ·
      21 hours ago

      I have a slightly unique version of this.

      When I was in high school, one of the maths teachers had printed out pi to 100+ digits on tractor feed paper (FYI I am old) and run it around the top of the classroom as a nerdy bit of cornice or whatever.

      Because I was so insanely clever(…), I decided to memorise pi to 20 digits to use as my school login password, being about the maximum length password you could have.

      Unbeknownst to me, whoever printed it had left one of the pieces of the tractor feed folded over on itself when they hung it up, leaving out a section of the first 20 digits.

      I used that password all through school, thinking i was so clever. Until i tried to unrelatedly show off my knowledge of pi and found I’d learned the wrong digits.

      I still remember that password / pi to 20 wrong digits. On the one hand, what a waste of brain space. On the other hand, pretty secure password I guess?

  • AbouBenAdhem@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    edit-2
    1 day ago

    A number for which that is true is called a normal number. It’s proven that almost all real numbers are normal, but it’s very difficult to prove that any particular number is normal. It hasn’t yet been proved that π is normal, though it’s generally assumed to be.

    • silasmariner@programming.dev
      link
      fedilink
      arrow-up
      0
      ·
      11 hours ago

      Technically to meet OPs criteria it needs only be a rich number in base 10, not necessarily a normal one. Although being normal would certainly be sufficient

    • prime_number_314159@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      16 hours ago

      I love the idea (and it’s definitely true) that there are irrational numbers which, when written in a suitable base, contain the sequence of characters, “This number is provably normal” and are simultaneously not normal.

    • It’s remarkable how there are uncountably many non-normal numbers, yet they take up no space at all in the real numbers (form a null set), since almost all numbers are normal. And despite this, we can only prove normality for some specific classes of examples.

      It helps me to think, how there are many “totally random” or non computable numbers, that are not normal because they don’t contain the digit 1.

  • The jury is out on whether every finite sequence of digits is contained in pi.

    However, there are a multitude of real numbers that contain every finite sequence of digits when written in base 10. Here’s one, which is defined by concatenating the digits of every non-negative integer in increasing order. It looks like this:

    0 . 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
    
  • lily33@lemm.ee
    link
    fedilink
    arrow-up
    0
    ·
    1 day ago

    It’s almost sure to be the case, but nobody has managed to prove it yet.

    But simply being infinite and non-repeating doesn’t guarantee that all finite sequences should appear. For example, you could have an infinite non-repeating number that doesn’t have any 9s in it.

      • ProfessorScience@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        16 hours ago

        Rare in this context is a question of density. There are infinitely many integers within the real numbers, for example, but there are far more non-integers than integers. So integers are more rare within the real.

      • cynar@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        21 hours ago

        There are lot that fit that pattern. However, most/all naturally used irrational numbers seem to be normal. Maths has, however had enough things that seemed ‘obvious’ which turned out to be false later. Just because it’s obvious doesn’t mean it’s mathematically true.